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The marine ascidian Clavelina cylindrica produces a
series of interesting tricyclic quinolizidine and indolizidine
alkaloids that show toxicity in a brine shrimp assay.1
Cylindricines A (1), C (2), D (3), E (4), and F (5) differ only
in the functionality of the methylene substituent in the five-
membered ring. Interestingly, cylindricines A and B (7)
interconvert simply upon standing in solution, presumably
via the aziridinium intermediate 6. A structurally related

alkaloid lepadiformine (8), which has been isolated from
Clavelina lepadiformis, shows in vitro cytotoxic activity
toward several tumor strains.2 Lepadiformine was postu-
lated to be epimeric to cylindricine C (2) at C2 and also to
lack the C4 ketone carbonyl functionality. It appears from
published NMR NOE data that the molecule prefers to exist
in conformation 8a rather than 8b.2 On the other hand,
molecular mechanics calculations (PCModel) indicate that
conformer 8b (axial hexyl group) is about 2.6 kcal/mol lower
in energy than the flip form 8a (equatorial hexyl). Interest-
ingly, on the basis of 1H NMR studies, it was proposed that
lepadiformine (8) has the unusual zwitterionic structure
shown. More recently, fasicularin (9) was found in a different
ascidian genus.3 This latter alkaloid, which is analogous to

the cylindricine B quinolizidine subclass but is epimeric at
C10, is cytotoxic and is also active against a DNA repair-
deficient strain of yeast.

In 1997, Snider and Liu described the first total syntheses
of cylindricines A, D, and E.4a Moreover, Pearson has
described some interesting synthetic studies in this area
involving azaallyl anion cycloadditions.4b In this paper, we
disclose a convergent, stereoselective route to the tricyclic
structure 8 proposed for lepadiformine via a strategy involv-
ing an intramolecular nitrone/diene dipolar cycloaddition as
the key step.5,6 We also report that structure 8 does not
correspond to natural lepadiformine.

Our synthetic route commenced with acetone oxime,
which can be dilithiated7 and alkylated with commercially
available epoxide 10 to give (E)-oxime alcohol 11 in good
yield (Scheme 1).8 Subsequent regiospecific C-alkylation of
the trianion of oxime 11 with (E/E)-dienyl halide 129 then
provided diene 13 (as a mixture of (E/Z)-oxime geometric
isomers after purification by chromatography).10 The linear,
acyclic compound 13, which contains all of the carbons
necessary for constructing the tricyclic skeleton of lepadi-
formine, was elaborated to the requisite cyclic nitrone
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Scheme 1a

a Reagents: (a) TiCl3, NH4OAc, H2O/HOAc (1/1), dioxane, 20 min,
rt, 86%; (b) TBDPSCl, imidazole, CH2Cl2, 16 h, rt, 92%; (c) (HOCH2)2,
p-TsOH, PhH (reflux), 16 h, 97%; (d) TBAF, THF, 16 h, rt, 99%; (e)
Swern oxidation, 93%; (f) NH2OH-HCl, pyr, EtOH, 30 min, rt, 100%;
(g) NaBH3CN, 2 N HCl, MeOH, 0 °C-rt, 2 h, 95%.
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precursor by a straightforward sequence as shown in Scheme
1. Thus, the oxime 13 was cleaved to the ketone,11 the alcohol
functionality of the product was protected, and the resulting
silyl ether ketone was then converted to silyl ether ketal 14.
Removal of the silyl group of 14, oxidation of the resulting
alcohol to the corresponding ketone, and formation of
hydroxylamine 15 via hydride reduction12 of the oxime could
be effected in good overall yield.

To continue the synthesis, oxime ketal 15 was trans-
formed to the stable cyclic nitrone 16 using dilute acid
(Scheme 2). Thermolysis of this diene/nitrone 16 in DMSO
at 190 °C led to a single isoxazolidine cycloadduct 17 (63%).13

The structure and stereochemistry of this product were
ultimately established by X-ray analysis of a subsequent

intermediate (vide infra). It should be added that it appears
for stereoelectronic reasons that the linking chain in this
nitrone probably assumes a boatlike conformation for the
[3 + 2] cycloaddition as depicted in structure 16. Also, for
steric reasons the cycloaddition occurs exclusively on the
cyclic nitrone face opposite to the large phenoxymethyl
group.5a,b

The N-O bond of this cycloadduct 17 was cleaved with
Zn dust to give amino alcohol 18, which was oxidized with
Dess-Martin reagent to afford a single stereoisomeric
tricycle 20, presumably via amino enone 19. From inspection
of models, it is clear that cyclization of enone 19 can only
occur to give the lepadiformine stereochemistry at C2 for
stereoelectronic reasons. It might also be noted that this
cyclization must occur initally to generate the piperidone
ring of 20 as a boat. The structure and conformation
indicated in structure 20 were supported by 2D NMR
experiments (NOESY, HMQC, and 13C Inadequate).14

To correlate tricycle 20 with lepadiformine, it was neces-
sary to remove the ketone carbonyl group. Rather surpris-
ingly, exposure of 20 to Clemmensen conditions15 led to a
mixture of olefin 21 and the desired reduction product 22,
with the former compound predominating (ratio ∼8.5:1). It
was possible, however, to hydrogenate 21 from the more
exposed olefin face to give 22.16 The structure and stereo-
chemistry of tricycle 22 were confirmed by X-ray analysis
of its picrate salt (see Supporting Information). Interestingly,
compound 22 has a conformation in the crystal form corre-
sponding to that of 8b, as predicted by computer modeling
(vide supra).

Finally, the O-phenyl protecting group was removed by
Birch reduction, followed by acid hydrolysis, to yield amino
alcohol 23 in good yield.17 We were surprised to find,
however, that comparison of the proton and carbon NMR
spectra of our synthetic 23 with those of the natural
material18 indicated that the compounds were clearly dif-
ferent. In view of these results and those described by
Pearson and Ren in the accompanying paper,19 it appears
that the originally proposed structure of lepadiformine
requires revision.
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Scheme 2a

a Reagents: (a) 3 N HCl, THF, 4 h, rt, 92%; (b) DMSO, 190 °C, 16
h, 63%; (c) Zn dust, HOAc, H2O, 45 °C, 3 h, 91%; (d) Dess-Martin,
t-BuOH, CH2Cl2, 40 min, rt, 71%; (e) Zn(Hg), concd HCl, PhMe, 90 °C,
23 h; (f) H2 (1 atm), 10% Pd/C, EtOH, 6 h, rt, 70%; (g) Li/NH3, EtOH,
THF, -50 °C, 4 h; 2 N HCl/MeOH, THF, 6 h, 71%.
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